On the well-posedness of Galbrun's equation

نویسندگان

چکیده

Galbrun's equation, which is a second order partial differential equation describing the evolution of so-called Lagrangian displacement vector field, can be used to study acoustics in background flows as well perturbations astrophysical flows. Our starting point for deriving linearized Euler's equations, first system equations that describe Eulerian flow perturbations. Given solution we introduce linear where perturbation fluid velocity acts source term. solves provided it regular enough and no-resonance assumption holds. In case steady tangential domain boundary, prove existence, uniqueness, continuous dependence on data solutions an initial–boundary-value problem equations. For such flows, demonstrate well-defined, initial datum chosen fulfill assumption, derive classical energy estimate (sufficiently to) equation. Due presence zeroth terms indefinite signs allows grow exponentially with time. L'équation de Galbrun, est une équation aux dérivées partielles du ordre qui décrit l'évolution d'un champ vecteurs déplacements, dit Lagrangien. Elle peut être utilisée pour étudier l'acoustique des écoulements à grande échelle, ainsi que les astrophysiques. Notre départ, dériver l'équation d'Euler linéarisée, un système d'équations premier décrivant l'écoulement. Une équations linéarisées étant donnée, nous introduisons le déplacement Lagrangien comme la d'une linéaire ordre, dont membre Eulérienne vitesse fluide. Ce condition qu'il soit suffisamment régulier et l'hypothèse dite non-résonance satisfaite. Dans cas où l'écoulement échelle stationnaire tangent frontière domaine, démontrons résultats d'existence, d'unicité dépendance continue par rapport données, problème limites avec initiale, linéarisées. Pour tels écoulements, bien défini, donnée initiale choisie afin satisfaire dérivons estimation classique l'énergie régulières Galbrun. En raison présence termes d'ordre zéro signes indéfinis dans équations, l'estimation autorise croissent exponentiellement temps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Well-posedness of the Degasperis-procesi Equation

We investigate well-posedness in classes of discontinuous functions for the nonlinear and third order dispersive Degasperis-Procesi equation (DP) ∂tu− ∂ txxu + 4u∂xu = 3∂xu∂ xxu + u∂ xxxu. This equation can be regarded as a model for shallow-water dynamics and its asymptotic accuracy is the same as for the Camassa-Holm equation (one order more accurate than the KdV equation). We prove existence...

متن کامل

The Well-posedness Ofthe Kuramoto-sivashinsky Equation

The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are modeling reaction-diffusion systems, flame-propagation and viscous flow problems. It is considered here, as a prototype to the larger class of generalized Burgers equations: those consist of quadratic nonlinearity and arbitrary linear parabolic part. We show that such equations are well-posed, thus admitting ...

متن کامل

Well-posedness of Second Order Evolution Equation on Discrete Time

We characterize the well-posedness for second order discrete evolution equations in UMD spaces by means of Fourier multipliers and R-boundedness properties of the resolvent operator which defines the equation. Applications to semilinear problems are given.

متن کامل

Remark on Well-posedness and Ill-posedness for the Kdv Equation

We consider the Cauchy problem for the KdV equation with low regularity initial data given in the space Hs,a(R), which is defined by the norm ‖φ‖Hs,a = ‖〈ξ〉s−a|ξ|a b φ‖L2 ξ . We obtain the local well-posedness in Hs,a with s ≥ max{−3/4,−a − 3/2}, −3/2 < a ≤ 0 and (s, a) 6= (−3/4,−3/4). The proof is based on Kishimoto’s work [12] which proved the sharp well-posedness in the Sobolev space H−3/4(R...

متن کامل

Well-posedness of the transport equation by stochastic perturbation

We consider the linear transport equation with a globally Hölder continuous and bounded vector field, with an integrability condition on the divergence. While uniqueness may fail for the deterministic PDE, we prove that a multiplicative stochastic perturbation of Brownian type is enough to render the equation well-posed. This seems to be the first explicit example of partial differential equati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2021

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2021.04.004